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Abstract—Given the multilevel internal SSD parallelism at the different four levels: channel-level, chip-level, die-level, and plane-

level, how to exploit these levels of parallelism will directly and significantly impact the performance and endurance of SSDs, which is

in turn primarily determined by three internal factors, namely, advanced commands, allocation schemes, and the priority order of

exploiting the four levels of parallelism. In this paper, we analyze these internal factors to characterize their impacts, interplay, and

parallelism for the purpose of performance and endurance enhancement of SSDs through an in-depth experimental study. We come

to the following key conclusions: 1) Different advanced commands provided by Flash manufacturers exploit different levels of

parallelism inside SSDs, where they can either improve or degrade the SSD performance and endurance depending on how they are

used; 2) Different physical-page allocation schemes employ different advanced commands and exploit different levels of parallelism

inside SSDs, giving rise to different performance and endurance impacts; 3) The priority order of using the four levels of parallelism

has the most significant performance and endurance impact among the three internal factors. The optimal priority order of using the

four levels of parallelism in SSDs is found to be: 1) the channel-level parallelism; 2) the die-level parallelism; 3) the plane-level

parallelism; and 4) the chip-level parallelism.

Index Terms—NAND Flash-based SSD, advanced commands, allocation schemes, internal parallelism, performance, endurance

Ç

1 INTRODUCTION

DURING the last two decades, tremendous development
and growth have happened in the NAND-Flash-based

Solid State Drive (SSD). Various ingenious methods [1], [2],
[3], [4], [5], [6] have been presented to decrease the price,
increase the per-unit capacity, improve the reliability, and
address the random-write performance penalty for enter-
prise quality Flash memory storage. SSDs have been widely
employed in modern computing systems from low-end
personal computers to high-end high-performance super-
computers. Thus, academia and industry pay a tremendous
deal of attention to the performance and endurance issues
of the solid-state storage system [7], [8], [9], [10], [11].

Such performance and endurance issues of SSDs, from

Flash Translation Layer designs [12], [13], [14], [15] and buffer

schemes [16], [17], [18], [19] to the characteristics of Flash or

SSD [20], [21], [22], [23], have been extensively discussed in

the literature. However, some SSD internal behaviors,

including those of advanced commands, allocation schemes,
and parallelism inside SSDs that have potentially significant
impacts on the SSD performance and endurance have been
ignored. While there are some studies [14], [17], [24], [25],
[26], [27] touching on the performance and endurance
impacts of some of these internal behaviors, they focused
on one or two individual factors in isolation and ignored the
interplay among these factors, to the best of our knowledge.
Our study reveals that advanced commands and allocation
schemes are closely interrelated with the multiple levels of
parallelism inside SSDs, and judicious and coordinated
exploitation of these factors has the most profound impact
on performance and endurance of SSDs.

In this paper, we thoroughly examine advanced com-
mands, allocation schemes, parallelism inside SSDs and
their relationship and interplay that have been largely
ignored in the literature. Our in-depth experimental study
has helped us obtain the following important and useful
insights into the design of high-performance SSDs.

Advanced commands. To improve the performance of
SSDs through efficient read, write, and erase operations,
manufacturers have provided three kinds of advanced
commands, including copyback, multiplane, and interleave.
The latter two utilize two levels of parallelism inside SSDs.
The use of these three advanced commands must adhere to
some strict restrictions. We find that the appropriate
application of these commands is extremely important. For
instance, using the copyback command blindly results in a
significant increase in the erasure count and average response
time, by as much as 17.8 times (17:8�) and 7.7 times (7:7�),
respectively, under the MSN workload (See Section 4.1).
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Allocation schemes. Dynamic allocation assigns physical
pages dynamically, while static allocation is based on fixed
striping. The latter is easy in implementation and can be
very effective in some application environments, while the
former is more flexible and adaptive in exploiting paralle-
lism and, thus, conducive to better performance in most
cases. The physical page assigned to a logical page can be
calculated by a series of formulas in static allocation. Static
allocation performs consistently the best in serving read
requests under all workloads, while dynamic allocation is
superior in write and overall performance and endurance
under most workloads (See Section 4.2).

Priority order of SSD parallelism levels. Parallelism has
been regarded as a key factor in achieving the peak SSD
performance [24]. There are four levels of parallelism inside
an SSD:

1. channel-level,
2. chip-level,
3. die-level, and
4. plane-level [47], [48].

Advanced commands utilize the last two levels of paralle-
lism; allocation schemes can effectively utilize multiple levels
of parallelism and determine the priority order of them. Our
analysis and evaluation show that there tends to exist an
optimal priority order of the four levels of parallelism.
Improper priority orders can result in a performance
degradation of up to 60 percent (See Section 4.3).

The rest of the paper is organized as follows: The
background necessary for motivating this research is
presented in Section 2. Section 3 introduces the evaluation
platform and workloads. Then, we present our extensive
trace-driven evaluations of the parallelism exploitation
inside SSDs in Section 4. In Section 5, we present the
design guideline and an example of high-performance
SSDs. Related work is introduced in Section 6. Section 7
summarizes the key observations and insights obtained
from our evaluations.

2 BACKGROUND AND MOTIVATION

2.1 Flash Memory Basics

Generally speaking, there are two kinds of Flash memory:
NOR and NAND [3]. NOR-Flash memory provides byte-
level (8 bits) random access, thus it is typically used in read-
only applications such as storing firmware codes. In
contrast, NAND-Flash memory provides higher storage
density, larger capacity, and lower cost than NOR-Flash
memory, but only supports page-level (2, 4 KB, etc.)
random access. Thus, it is typically used for more general-
purpose applications such as storing user data. Throughout
this paper, we will use the term “Flash” to refer to NAND-
Flash memory specifically.

To increase storage density, Flash manufactories aggre-
gate several Flash chips into a module called package [28],
[29], [30], [31], [32], [33], [34]. All chips in a package share
the same 8/16-bit-I/O bus but have separated chip enable
(CE) and ready/busy (R/B) control signals. At present,
major Flash packages use 8-bit wide I/O bus. Without
special explanation, I/O bus is by default 8-bit wide in the
following paper. Each chip is composed of multiple dies.

Each die has one internal R/B signal invisible to users and
valid only in advanced commands. Each die is composed of
multiple planes. Each plane contains thousands of Flash
blocks and one data register (Some products’ plane contains
an extra cache register). A flash block typically consists of 64
or 128 pages, where a page is further divided into many
512-byte subpages, which equals a typical sector size. Each
subpage has 16-byte spare space used to store metadata.
While chips and dies are often confused with each other in
many previous studies in the literature, CE and R/B signals
make them clearly distinct from each other. A chip is a basic
service unit that has its independent CE and R/B signals. A
die is a component of a chip, which has an internal R/B
signal only.

There are two well-known and unique Flash physical
characteristics, namely, write-after-erase and limited erase
cycle. A write operation can only change the value of each
target bit from “1” to “0.” After being written a page must
be erased (i.e., all the bits are reset to “1”) before the next
write operation. Each Flash block has an upper limit of
erase cycles before it is worn out. After worn out, a block
can no longer store any data. A typical erase-cycle limit is
about 10K-100K [4].

2.2 SSD Basics

Flash memory SSD is an embedded system, which is mainly
composed of storage component (Flash memory chips) and
control component (embedded CPU), called an SSD
controller, as shown in gray blocks of Fig. 1. Fig. 1
illustrates the traditional logical architecture of an SSD.
SSD controller must provide connections between host
interface and Flash channel interface. Generally speaking,
for one SSD, there is only one host interface to connect with
the host, such as PATA, SATA, SAS, PCI-E, and so on; in
contrast, there are multiple Flash channel interfaces that can
connect with multiple independent channels, inside an SSD
controller, for increasing SSD’s capacity and improving its
I/O performance [24].

Based on the different sharing modes of Flash chip
control signals and data signals [24], there are multiple
ways to implement Flash memory channel interface.
Because we focus on the design of high-performance SSD,
we only consider one special implementation of channel,
which provides the best performance, called independent
channel as shown in Fig. 2.

The SSD controllers provide two kinds of on-chip
resources, including logic cells and user I/O pins. Except
for the logic cells used for implementing host interface,
DMA, buffer interface and other system components,
building Flash channel controllers will consume the rest of
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logic cells. A Flash channel controller consumes not only
logic cell resource but also user I/O pin resource. We list all
signals needed by a Flash channel in Table 1. If we employ
four chips in a channel, each channel will consume 21 user
I/O pins. The independent Flash channel number is
restricted by the limited logic cell and user I/O pin
resources.

2.3 Parallelism Inside SSDs

There are four levels of parallelism inside SSDs:

1. channel level (among channels);
2. chip level (among chips in a channel);
3. die level (among dies in a chip); and
4. plane level (among planes in a die).

For instance, as shown in Fig. 3, if a request is serviced by
channel 0 and channel 1 simultaneously, it exploits the
channel-level parallelism; if it is served by chip 0 of package
0, chip 1 of package 0 and chip 0 of package 1 in channel 0
simultaneously, it leverages the chip-level parallelism; if it
is served by die 0 and die 1 on the same chip, it utilizes the
die-level parallelism; if it is served by plane 0 and plane 1 of
the same die, it makes use of the plane-level parallelism.

In fact, except for the channel-level parallelism, other
three levels of parallelism can improve the utilization of
an independent channel. Meanwhile, limited by the
technical constraints of current asynchronous Flash I/O
bus, the maximum bandwidth is 40 MB/sec [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [37]. Therefore, by utilizing chip-level, die-level, and
plane-level parallelism [8], [24] it is possible to achieve
this maximum bandwidth.

2.4 Basic Command and Advanced Command

There are three common basic commands in Flash: read,
program (write), and erase. A read command fetches data
from a target page. A write command writes data to a target
page. An erase command resets all bits of a target block to
“1”. Each read/write command operation consists of two
steps: 1) data transfer; and 2) reading/writing data from/to
the target page to/from the plane data register. All
commands are initiated by writing the command code to

the command register and the address of the request to the
address register. The address refers to the location of the
target data of the request inside the chip. A Flash chip
address is separated into five segments: die, plane, block,
page, and in-page, as illustrated in Fig. 4. Within a block,
the pages must be written consecutively in the ascending
order of page address. Random-page-address writing is
prohibited. We call this restriction Ra.

Most Flash manufacturers provide advanced commands,
such as copyback, multiplane, and interleave, to further
improve the performance of SSD. Advanced commands
are extensions of the basic read, program and erase
commands but with some usage restrictions [28], [29],
[30], [31], [32], [33], [34], [37].

2.4.1 Copyback (Internal Data Move)

This command moves data from one page to another in the
same plane without occupying the I/O bus. The command
saves twice data transfer time. Some manufacturers also call
it “internal data move” [38], [39]. We will call it copyback in
the rest of the paper. The source page and the target page
must have the same die and plane addresses, and their
addresses must be both odd or even. As shown in Fig. 3, a
copyback command operation can only move data from
page 0 to page 2, or from page 1 to page 3, and so on.
Moving data from page 0 to page 1 or page 3 are prohibited.
We call this restriction Rb.

2.4.2 Multiplane

This command activates multiple read, program or erase
operations in all planes of the same die. The command
utilizes the plane-level parallelism. It only costs the time of
multiple data transfer and one read, write or erase
operation to complete multiple read, write or erase
operations as illustrated in Fig. 5a. The pages executing a
multiplane read/write operation must have the same die,
block, and page addresses. And the blocks executing a
multiplane erase operation must have the same die and
block addresses. As shown in Fig. 3, only page 1 from plane
0 and page 1 from plane 1 of the same die can be read/
written simultaneously by using a multiplane read/write
operation. Reading/writing page 1 from plane 0 and page 3
from plane 1 using a multiplane read/write operation is
prohibited. We call this restriction Rc.
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Fig. 2. The connection of an independent channel.

TABLE 1
The Signals Provided by an Independent SSD Channel

Controller (N Indicates the Number of Signals; x
Indicates the Number of Chips in a Channel)

Fig. 3. An SSD internals.

Fig. 4. A format of Flash chip address.

Fig. 5. The multiplane write and interleave write command process.



2.4.3 Interleave

This command executes several read, write, erase, and
multiplane read/write/erase operations in different dies of
the same chip simultaneously. It utilizes the die-level
parallelism. The interleave command is different from the
interleave operation [17], [25], [26], [27]. The former is a
Flash command that is executed among different dies in the
same chip, while the latter is executed among different
chips in the same channel. An interleave write command is
illustrated in Fig. 5b.

2.5 Allocation Schemes

An allocation scheme determines how to choose free
physical page to accommodate logical page to be written
to the SSD. To locate a particular physical page, one must
know the channel address and chip address in addition to
the die address, plane address, block address, and page
address as shown in Fig. 4. The format of a full address of
SSD is shown in Fig. 6.

Allocation schemes are classified into two categories:
static and dynamic.

Static allocation first assigns a logical page to a
predetermined channel, chip, die, and plane before allocat-
ing it to any free physical pages of the plane [14]. The
channel, chip, die, and plane addresses assigned to each
logical page are typically calculated by certain formulas
that define a special allocation scheme, which we will
discuss in Section 4.2.

Dynamic allocation assigns a logical page to any free
physical page of an entire SSD. When a write request
arrives, a dynamic allocation scheme chooses a free physical
page by considering several factors, such as the idle/busy
state of channels and chips, the erasure count of blocks, the
priority order of parallelism levels, and so on.

In this paper, we will evaluate and directly compare
static and dynamic allocation schemes in terms of perfor-
mance and wear leveling, and consider the utilization of
multiple levels of parallelism.

2.6 Research Motivation

To design a high-performance and high-endurance SSD,
appropriately utilizing multiple levels of parallelism is a
basic and important factor. Utilizing these multiple levels of
parallelism relates to several other factors, such as advanced
commands, allocation schemes, and the priority order of
using different parallelism levels inside SSD. The previous
literature discuss part of these factors independently, thus
we must answer the following research questions that have
not been fully and comprehensively addressed, if at all, in
the literature, to the best of our knowledge.

Motivation 1: Advanced commands make use of two
kinds of parallelism: plane-level parallelism and die-level
parallelism. When we utilize these two parallelism by
employing advanced commands, what issues should be
considered by us?

Motivation 2: Taking advanced commands and multiple
levels of parallelism into consideration, how can we design
static allocation schemes and dynamic allocation schemes?
What is the difference on performance and endurance when
using these two allocation schemes? And, how to choose an
appropriate allocation scheme?

Motivation 3: Given the four levels of parallelism inside
an SSD, what is the optimal priority order to optimize the
performance and endurance of an SSD?

To comprehensively answer these questions, we conduct
a series of trace-driven experiments and evaluations
detailed in Section 4.

3 EVALUATION PLATFORM

In this section, we will introduce the evaluation environ-
ment we use to conduct the in-depth investigation.

3.1 Evaluation Platform

We employ an event-driven, modularly designed and
configurable SSD simulator, called SSDsim [47], as our
evaluation platform.

The evaluation platform is assumed to be an SSD with
multiple channels, multiple chips, multiple dies, and
multiple planes. There are many ways to organize channels
and chips based on the sharing methods of I/O bus,
CE signals, and R/B signals. Since our research focuses on
the SSD used in the high-performance computing environ-
ment, we will concentrate on independent channel organi-
zation, as shown in Fig. 2. The timing and organization
characteristics of the configuration are based on a real
NAND-Flash product [28], as summarized in Table 2.

3.2 Workloads

We use a set of real-world traces listed in Table 3 to study
the performance and endurance impacts of advanced
commands, allocation schemes, and multiple levels of
parallelism inside SSDs. Develop [35] was obtained from a
file server accessed by more than 3,000 users to download
various daily builds of Microsoft Visual Studio. Exchange
[35] was collected at the Microsoft Exchange 2007 SP1
server, which is a mail server for 5,000 corporate users.
Financial1 and Financial2 were collected at a large financial
institution [45]. MSN [35] was collected at the Microsoft’s
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Fig. 6. The format of a full address of SSD.

TABLE 2
Configuration Parameters Used in SSDsim

(The Channel-Chip-Die-Plane-Block-Page parameter indicates the
numbers of channels in SSD, chips in a channel, dies in a chip, planes
in a die, blocks in a plane, and pages in a block, respectively. Unless
otherwise noted, they are the default configuration parameters for the
evaluation.)



several live file servers. Radius [35] was obtained from a

RADIUS authentication server that is responsible for

worldwide corporate remote access and wireless authenti-

cation. Websearch was collected at a popular Internet web

search machine [45].

4 EXPERIMENTAL EVALUATIONS

In this section, we evaluate two SSD internal behaviors

about multiple levels of parallelism inside SSDs, which

have a notable impact on SSD performance and endurance,

namely, 1) advanced commands in Section 4.1; and

2) allocation schemes in Section 4.2. This is followed by a

study on the priority order of parallelism levels inside SSD,

presented in Section 4.3.

4.1 Advanced Commands

In this section, we evaluate the performance impact of

advanced commands provided by Flash manufacturers,

and how restrictions Ra, Rb, and Rc make these advanced

commands a double-edged sword.
To better examine the performance impact of the multi-

plane read/write/erase commands that exploit the plane-

level parallelism and the interleave read/write/erase

commands that exploit the die-level parallelism, we exclude

the interference of the channel-level parallelism by employ-

ing a single-channel SSD in the experiments of this section.

We only present the results of the dynamic scheme, since

static allocation is shown to have the same performance and

endurance trend as dynamic allocation.

4.1.1 Copyback

When using the copyback command, restrictions Ra and Rb

must be adhered to. Fig. 7 illustrates the process of

executing a copyback command in a plane, where the data

stored in PPN ¼ 26 needs to be migrated to a free physical

page. This data migration is triggered by a garbage

collection operation. Since the pages in a block must be

programmed sequentially (Ra), the next available page is

PPN ¼ 1;217. However, Rb forbids writing the data to

PPN ¼ 1;217, forcing the invalidation (or waste) of PPN ¼
1;217 and migration of the data into PPN ¼ 1;218. We can

use the command blindly or wisely. Using the copyback

command blindly means that the command will be used in

all cases, whether or not the free page will be wasted. Fig. 7

illustrates the case of using copyback blindly; In contrast,

use the command wisely means that the command will only
be used when the free pages will not be wasted.

The performance impact of how the copyback command
is used, measured in the average response time normalized
to that of only using the basic commands, is plotted as a
function of the workloads and labeled on the left Y-axis of
Fig. 8a. The erasure count of using the copyback command
blindly, normalized to that of only using basic commands,
is shown by small triangles and labeled on the right Y -axis
of the figure. Fig. 8b plots the cumulative distribution
function (CDF) of the response time (Due to the space
limit, we only list the CDF of MSN workload). The
inserted figure is an amplified view of the inflexion point
of CDF.

From Fig. 8a, it is clear that using the copyback command
blindly has a notable negative impact on the average
response time and the erasure count under the Dev, MSN,
and Ex workloads. This is because using the copyback
commands blindly, compared with only using the basic
commands, leads to 1.49, 2.87, 0.17 times more pages being
invalidated under these workloads, respectively, which
trigger more frequent garbage collections and further
decrease the overall performance and increase erasure
count. On the contrary, using the copyback command wisely
does improve performance without increasing the erasure
count. This is because there are no extra invalidated pages
and no extra erasure operation induced. Moreover, we can
find in Fig. 8a that using the copyback command blindly
leads to a large number of erase operations, which results in
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TABLE 3
Characteristics of the Workloads

Fig. 7. An example of the copyback command.

Fig. 8. (a) Performance and endurance impacts of the two methods of
using copyback command; (b) CDF of the response time.



significant response-time latency of about 10 percent
requests shown as the blue line of Fig. 8b. While using the
command wisely saves data transfer time without increasing
erase operation, therefore it slightly better than only using
the basic commands shown as the red and black lines.

Insight 1. The copyback command should be used wisely
only when the addresses of the source page and the target
page have the same parity. Otherwise, the I/O performance
and endurance of SSDs can be significantly reduced.

4.1.2 Multiplane

In this section, we analyze the multiplane command for
reads and writes, which we call MPW (Multiplane Write)
and MPR (Multiplane Read) for short in the remainder of
the paper.

Multiplane write. As mentioned in Section 2.4, a multi-
plane command can execute the same basic commands in
all planes within the same die. Therefore, it exploits the
plane-level parallelism. When using an MPW command,
restrictions Ra and Rc must be adhered to.

Fig. 9 illustrates an MPW command in operation. Two
different planes of the same die, plane 0 and plane 1, are
shown in the figure. The page address of the next available
page in plane 0 is 26 while that in plane 1 is 24. When using
the MPW command in these two planes,PPN ¼ 24 and
PPN ¼ 25 in plane 1 will be invalidated. Therefore, in this
case, executing the MPW command invalidates (and
wastes) two free pages.

Similar to the copyback command, the MPW command
can be used blindly or wisely. Fig. 9 shows the case of using
the MPW command blindly. In Fig. 10a, we plot the average
response times and erasure counts of the MPW command in
the same way as in Fig. 8a. Fig. 10b plots CDF of the
response time under the MSN workload.

As shown in Figs. 10a and 10b, using MPW blindly
improves average response time compared with the basic
commands and using MPW wisely. However, a large
number of free pages are invalidated (e.g., 0.72, 1.04, 0.58
times more pages are being wasted under the Dev, MSN,
and Ex workloads compared with using the basic com-
mands only), which leads to more extra erase operations.
Note that the saved time of plane-level parallelism out-
weighs the wasted time of extra erase operations. Therefore,
using MPW blindly can still improve response time under
all workloads. On the other hand, since the conditions
required by the wise MPW, i.e., the target pages executing
an MPW must have the same chip, die, block, and page
addresses, can rarely be met, the improvement by the wise
MPW is insignificant.

Insight 2. Using MPW blindly improves the I/O perfor-
mance but reduces the endurance under most workloads.
The impact of the wise MPW is negligible because the
conditions required by its application can rarely be met.

Multiplane Read. MPR performs multiple-page read
operations in different planes of the same die simulta-
neously. When using MPR, restriction Rc must be adhered
to. In Fig. 11, we show the average response times of MPR
under the dynamic and static allocation schemes, respec-
tively, normalized to the response time of using the basic
commands only. We find that the performance gains are
negligible under a majority of the workloads. An improve-
ment of only 15 percent is observed for a two-page MPR
command. Moreover, the fact that Ex and Fin1 are write-
dominant workloads causes the performance gains by
MPR to be negligible. Since the request size of Fin2 is too
small to be striped into multiple pages, MPR is not
applicable there. Under Web, Dev, and MSN, the perfor-
mance gains are relatively higher, since these three work-
loads are read dominant, whose request sizes are multiples
of a Flash page size.

Insight 3. MPR cannot provide significant performance
improvement under most workloads. But in the application
environments with read-dominant workloads of large
request size (i.e., Web, Dev, and MSN), using MPR can
help improve I/O performance.

In addition to MPW and MPR, the multiplane command
can also activate multiple erase operations in all planes of
the same die. However, since the extent to which the erase
operations are triggered in all planes of the same die at
the same time is heavily dependent on the specific garbage
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Fig. 9. An example of using the MPW command.

Fig. 10. (a) Performance and endurance impacts of the two methods of
using the MPW command; (b) CDF of the response time.

Fig. 11. Performance gain of MPR over the basic commands under the
dynamic and static allocation schemes, respectively.



collection algorithm and wear-leveling algorithm used,
which are beyond the scope of this paper, we will not
independently evaluate the performance impact of using
multiplane erase command.

4.1.3 Interleave

The interleave command exploits the parallelism among
dies in the same chip. Pages and blocks from different dies
of a chip can be read, written, and erased simultaneously by
executing an interleave command. The command is
different from other advanced commands in that only
restriction Ra must be adhered to. Therefore, unlike the
other advanced commands, there is no endurance loss
when using the interleave command.

We plot the performance gains due to the interleave
read/write/erase command as a function of the workloads
in Fig. 12, measured in the average response time normal-
ized to that based on the basic commands. Fig. 12 shows
that the I/O performance is improved.

Insight 4. The interleave command can help improve the
I/O performance without any endurance degradation.
Therefore, the interleave command should be applied
under all circumstances.

For the same reason given for the case of the multiplane
erase command at the end of Section 4.1.2, we will not
evaluate the impact of using the interleave erase command
independently. The interleave command can be combined
with MPW and MPR, which we will discuss later.

4.1.4 The Combined Use of the Three Advanced

Commands

In this section, we employ the three advanced commands
simultaneously and evaluate their combined impacts on the
performance and endurance of SSDs. Based on Insights 1-4,
there are two recommended approaches to using the
advanced commands, namely, 1) use the copyback com-
mand wisely, the MPW command blindly, and the
interleave command ubiquitously; and 2) use the copyback
command, the MPW command wisely, and the interleave
command ubiquitously.

In Fig. 13a, we plot the average response time and
erasure count of using the advanced commands in the two
recommended approaches as a function of workloads, in
the same way as Figs. 8a and 10a, and Fig. 13b plots CDF of
the response time under the MSN workload.

From these figures, we find that the combined use of
the advanced commands based on Approach 1 achieves the
best performance but leads to some SSD endurance degrada-
tion, while Approach 2 achieves less performance gains but
without any endurance loss.

4.2 Allocation Schemes

In this section, we compare the performances of the static
allocation and dynamic allocation schemes when exploiting
different levels of parallelism inside SSDs, and evaluate the
related wear-leveling issues.

Fig. 14 illustrates six different static allocation schemes,
referred to as S1, S2, S3, S4, S5, and S6. As we discussed in
Section 2.5, the channel, chip, die, and plane addresses of
each logical page in each special static allocation scheme
can be calculated by certain formulas. In what follows, we
present these formulas for each static allocation scheme.
The variables and operators that will be used in the
formulas are listed in Table 4.
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Fig. 12. Performance impact of the interleave command.

Fig. 13. (a) Performance and endurance impacts of the two recom-
mended approaches to the combined use of the advanced commands;
(b) CDF of the response time.

Fig. 14. The six typical static allocation schemes.



S1: As shown in Fig. 14a, the priority order of parallelism

levels in this scheme is:

1. the chip-level parallelism;
2. the die-level parallelism;
3. the plane-level parallelism; and
4. the channel-level parallelism.

The formulas for S1 are:

S2: As shown in Fig. 14b, the priority order of parallelism

levels in this scheme is:

1. the channel-level parallelism;
2. the chip-level parallelism;
3. the die-level parallelism; and
4. the plane-level parallelism.

The formulas for S2 are:

S3: As shown in Fig. 14c, the priority order of parallelism

levels in this scheme is:

1. the channel-level parallelism;
2. the plane-level parallelism;
3. the chip-level parallelism; and
4. the die-level parallelism.

The formulas for S3 are:

S4: As shown in Fig. 14d, the priority order of

parallelism levels in this scheme is:

1. the channel-level parallelism;
2. the die-level parallelism;
3. the chip-level parallelism; and
4. the plane-level parallelism.

The formulas for S4 are:

S5: As shown in Fig. 14e, the priority order of parallelism

levels in this scheme is:

1. the channel-level parallelism;
2. the plane-level parallelism;
3. the die-level parallelism; and
4. the chip-level parallelism.

The formulas for S5 are:

S6: As shown in Fig. 14f, the priority order of parallelism

levels in this scheme is:

1. the channel-level parallelism;
2. the die-level parallelism;
3. the plane-level parallelism; and
4. the chip-level parallelism.

The formulas for S6 are:

Dynamic allocation used in this section assigns a logical

page on any idle chip of any idle channel of the entire SSD.

The optimal order of parallelism levels used in this dynamic

allocation scheme will be discussed in Section 4.3. All the

data to read are stored evenly among all the chips of all the

channels in the entire SSD.
In this section, we conduct two sets of experiments. First,

we compare the average response time of dynamic alloca-

tion with that of static allocation when only two of the four

levels of parallelism, channel-level parallelism, and chip-

level parallelism, are exploited. In other words, we only

employ basic commands and do not employ advanced

commands. In this case, the representative static allocation

scheme is S2, because S2 shows the best performance when

only the channel-level parallelism and chip-level parallelism

are exploited. Second, we compare the average response

time of dynamic allocation with that of static allocation

when all four levels of parallelism are exploited. That is, we

employ basic commands and advanced commands simul-

taneously. In this case, the representative static allocation

scheme is S6, because the priority order of parallelism levels

used in S6 is the optimal order, which will be discussed in

Section 4.3.
The read/write/overall performance impacts of different

allocation schemes in the condition whether or not to

exploit die-level and plane-level parallelism are plotted in

Fig. 15, under six different workloads.
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TABLE 4
The Variables and Operators Used in the Formulas

of Assigning Physical Addresses of Logical
Pages in Static Allocation Schemes



4.2.1 Read Performance

From Fig. 15, we can find that the static allocation scheme
outperforms the dynamic allocation scheme for read
requests under all workloads. For a given read request,
whose size is a multiple of one logical page size, the striping
nature of static allocation is likely to distribute the
sequential logical pages of the request to different channels
and chips, which exposes and exploits the multichannel
parallelism inside SSDs, thus reducing the response time of
this request. In dynamic allocation, on the contrary, it is
entirely possible that the sequential logical pages are stored
in the same channel. For example, it leads to the increase of
1.5, 163.7, 95.5, 8.5, 365.1, and 0.2 percent more data stored
in the same channel requested with dynamic allocation
under Dev, Fin2, MSN, EX, Fin1, and RAD, respectively,
compared with static allocation, so that these sequential
logical pages will be operated in the same channel
sequentially, failing to exploit the channel-level parallelism
of SSD.

Insight 5. The static allocation scheme consistently out-
performs the dynamic allocation scheme in serving read
requests. Thus, in the application environments that
demand fast reads, or are read dominant in their work-
loads, the static allocation scheme should be employed.

4.2.2 Write Performance

Fig. 15 shows that the dynamic allocation scheme outper-
forms the static allocation scheme for write requests under
all workloads. The former is also superior to the latter in the
overall performance under the Ex, Fin1, and Rad workloads.
This is because the sequential logical pages of a multipage
write request are likely to be serviced by multiple chips in
several channels in the static allocation scheme, while the
response time of the request is determined by the last
completed logical page. If any one of the logical pages
happens to be on a busy chip, the response time of the
request can be severely delayed, because there are more

garbage collection and erase operations on a busy chip. This,
however, does not happen in dynamic allocation, because
write requests can be adaptively distributed to idle chips.
Ex, Fin1, and Rad are write-dominant workloads; therefore,
the overall performance of dynamic allocation is better than
that of static allocation under these three workloads.

Insight 6. The dynamic allocation scheme consistently
outperforms the static allocation scheme in serving write
requests. Thus, in the application environments that
demand fast writes, or are write dominant in their work-
loads, the dynamic allocation scheme should be employed.

4.2.3 Relationship between Allocation Schemes and

Advanced Commands

In Fig. 15, we observe another interesting phenomenon.
That is, when dynamic allocation is employed, with the
exception of the Ex workload, there is very little difference
in performance improvement between exploiting all four
levels of parallelism and exploiting only channel-level and
chip-level parallelism. However, when static allocation is
employed, this difference becomes significant, with the
four-level parallelism case clearly outperforming the two-
level parallelism case. This is because, when static allocation
is used, all logical pages are assigned to the fixed chips,
dies, and planes, making it very likely for these pages to be
located in the same chip. Therefore, exploiting die-level and
plane-level parallelism can notably improve performance.
On the other hand, when dynamic allocation is used and
with the absence of the die-level and plane-level paralle-
lism, logical pages can be assigned to multiple idle chips as
much as possible. In this case, exploiting the chip-level
parallelism can partially offset the lack of the die-level and
plane-level parallelism. Therefore, the performance im-
provement of adding the die-level and plane-level paralle-
lism is negligible.

For the Ex workload, when dynamic allocation is
employed, exploiting all four levels of parallelism brings
about more than 20 percent overall performance improve-
ment than exploiting only the channel-level and chip-level
parallelism. The main reason lies in the fact that Ex is write-
dominant workload and has the largest average write
requests size among all the workloads used in our
experiments, which makes the channel-level and chip-level
parallelism alone inadequate in dealing with of the large
write requests. Therefore, if dynamic allocation is employed,
adding the die-level and plane-level parallelism can sig-
nificantly improve the performance under the Ex workload.

Insight 7. In multiple-channel and multiple-chip SSDs, if
the dynamic allocation scheme is employed, advanced
commands may not be necessary, since the exploitation of
the channel-level and chip-level parallelism alone can
sufficiently deal with a majority of the requests under
most workloads. More importantly, ignoring the imple-
mentation of advanced commands in this case can reduce
the logic cell resource consumed in an SSD controller and
lower the design complexity of the SSD controller and FTL
[43]. On the other hand, if the static allocation scheme is
employed, all four levels of parallelism must be imple-
mented, in other words, the implementation of advanced
commands is a necessity.
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Fig. 15. Performance impact of different allocation schemes, measured
in the average response time normalized to that of dynamic allocation
with only the channel-level and chip-level parallelism.



4.2.4 Weal-Leveling

Wear-leveling algorithms are used to distribute the erase
operations evenly to the entire SSD for the purpose of
enhancing the endurance of the device. To balance the
erasure count, wear-leveling usually writes hot data to the
least frequently erased blocks and migrates cool data to
blocks with higher erasure counts [46]. Obviously, such
data migrations will lead to extra read/write and erase
operations that will have negative impacts on performance
and endurance. In Table 5, we list the standard deviation of
the total erasure counts of blocks in each plane for the static
and dynamic allocation schemes under the six workloads,
where a low standard deviation indicates a more evenly
distributed erase operations. It is clear from the table, that
dynamic allocation has a much better wear-leveling
efficiency than the static allocation.

Insight 8. The dynamic allocation scheme consistently
outperforms the static allocation scheme on the wear-
leveling efficiency.

4.3 Priority Order of Parallelism Levels in SSD

To determine the priority order of the four levels of
parallelism that optimizes the performance and endurance
of SSD, we first infer the optimal priority order qualita-
tively, and then confirm the optimality quantitatively by a
series of experiments with different allocation schemes.

Strictly speaking, each read/write operation consists of
two steps: 1) data transfer and 2) reading/writing data
from/to the target page to/from the data register of the
plane. One of the objectives of exploiting parallelism inside
SSDs is to overlap or pipeline these two steps. The chip-
level, die-level, and plane-level parallelism is exposed on
the same channel, and share the same channel bus. As a
result, these three levels of parallelism can only overlap or
pipeline step 2 of read/write operation. In contrast, the
channel-level parallelism overlaps not only step 2, but also
step 1 of an operation. Therefore, the channel-level
parallelism should be given the highest priority among the
four levels of parallelism. On the one hand, the chip-level
parallelism renders multiple chips busy. When the chips on
the channel are servicing requests, the subsequent requests
cannot be serviced until these chips return to the idle state.
On the other hand, the die-level parallelism and plane-level
parallelism only involve in a single chip, thus making them
a higher priority than the chip-level parallelism.

As shown in Fig. 16, to serve a four-page write-request,
two MPW operations are executed when exploiting the
plane-level parallelism. To exploit the die-level parallelism,
however, two interleave write commands are executed.
From the figure, we find the latter to be superior to the
former. Moreover, exploiting the plane-level parallelism
requires the execution of the MPW/MPR command, which
often invalidates free pages. On the contrary, the interleave
command exploiting the die-level parallelism has no such
disadvantages. Therefore, the die-level parallelism should
be given a higher priority than plane-level parallelism.

4.3.1 Evaluation of the Priority Order of SSD Parallelism

Levels under Dynamic Allocation

In this section, we use six different configurations of SSDs to
conduct a set of experiments to evaluate the priority order
of SSD parallelism. The configuration parameters of the six
SSDs are listed in Table 6.

The hardware organizations of SSD1 and SSD2 (see
Table 6) are different from those of SSD3, SSD4, SSD5, and
SSD6, thus we compare their performance in two separated
subfigures (Figs. 17a and 17b). Fig. 17a shows that SSD2
outperforms SSD1 consistently. In SSD2, we distribute
requests to different channels. When eight channels are
deployed, steps 1 and 2 of an operation can be perfectly
overlapped under all workloads. In SSD1, several pages of a
request are distributed to some chips of the same channel,
which results in multiple data transfers (i.e., step 1) and one
reading/writing of the Flash media (i.e., step 2). This
explains SSD2’s superiority to SSD1 and confirms quantita-
tively that the channel-level parallelism should be given the
first priority.

Fig. 17b shows that SSD4 consistently outperforms SSD3.
While SSD3 prefers the chip-level parallelism to the die-level
parallelism, SSD4 does exactly the opposite. When a request
involving two pages is served by SSD3, two chips become
busy. In contrast, only one chip becomes busy in SSD4,
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Fig. 16. The plane-level parallelism versus the die-level parallelism.

TABLE 6
Six Configurations of SSDs

(X>Y in the “Priority” field signifies that choosing a free page from X is
preferred to choosing one from Y. Cl.-Cp.-D.-P. indicates the numbers of
channels in an SSD, chips in a channel, dies in a chip, and planes in a
die, respectively. The “A” column indicates whether advanced com-
mands are used (Yes) or not (No)).

TABLE 5
The Standard Deviations of Total Erasure Counts of Blocks
in Each Plane when Employing Either the Static Allocation
Scheme or the Dynamic Allocation Scheme (B Indicates

that Only Basic Commands Are Used; BþA Indicates that
Basic Commands and Advanced Commands Are Used)



allowing SSD4 to serve more subsequent requests than
SSD3. This confirms that the die-level parallelism should be
given a higher priority than the chip-level parallelism.

SSD6 outperforms SSD5 because the former uses an
interleave write operation while the latter employs an MPW
operation when a request that needs to write two pages
arrives. Since using MPW blindly leads to free pages being
invalidated, as discussed in Section 4.1.2, more erase
operations are triggered in SSD5 than in SSD6. Therefore,
the die-level parallelism must be given a higher priority
than the plane-level parallelism.

SSD6 is superior to SSD4, because a request that needs to
read/write four pages can render two chips busy in SSD4
by executing two consecutive interleave read/write opera-
tions. Nonetheless, for the same request, only one chip is
rendered busy in SSD6 with the execution of a single
interleave multiplane read/write operation. Therefore, the
priority of the chip-level parallelism should be the lowest.

4.3.2 Evaluation of Priority Order under Static Allocation

In the experiments of this section, we use six different cases
of SSDs, SSD-S1, SSD-S2, SSD-S3, SSD-S4, SSD-S5, and SSD-
S6, which employ six different static allocation schemes, S1,
S2, S3, S4, S5, and S6, as shown in Fig. 14. These six SSDs
share the following common configuration parameters:
Eight channels in the SSDs, four chips in each channel,
two dies on each chip, two planes on each die, 2,048 blocks
on each planes, and each block contains 64 2 KB-pages. All
advanced commands are used. In addition to the six real-
world workloads listed in Table 3, we use a set of synthetic
workloads in our experiments, whose key characteristics
are listed in Table 7.

The performance comparisons of SSD-S1, SSD-S2, SSD-
S3, SSD-S4, SSD-S5, and SSD-S6 are shown in Fig. 18. We
find that SSD-S1 performs the worst among all the SSDs. It
further confirms that the channel-level parallelism should

be given the highest priority. With the exception of SSD-S1,
all SSDs perform almost equally under the real-world
workloads. This is because the request intensities of these
workloads are relatively low, which can be fully served by
the channel-level parallelism. Therefore, we use a set of
higher intensity synthetic workloads in our experiments.
Under these synthetic workloads, SSD-S6 performs the best,
since the allocation scheme of SSD-S6 is adhered to the
priority order of parallelism levels inferred at the beginning
of Section 4.3.

Insight 9. The optimal priority order of parallelism in
SSD should be:

1. the channel-level parallelism;
2. the die-level parallelism;
3. the plane-level parallelism; and
4. the chip-level parallelism.

5 DESIGN GUIDELINES

In this section, we discuss the design parameters of high-
performance SSDs based on the insights mentioned above,
and then followed by a design example.

5.1 Design Parameters

As mentioned in Section 2.3, exploiting parallelism can
improve the utilization of channels. We derive the formulas
for the channel utilization of exploiting different levels of
parallelism, by illustrating the exposure of different levels
of parallelism in Fig. 19. For example, assuming that we
employ a 2 KB-page Flash whose time parameters are listed
in Table 2, the channel utilization of using read command
without parallelism is 72.5 percent, as shown in Fig. 19a;
the channel utilization of using interleave two-plane write
command (i.e., exploiting the plane-level parallelism and
die-level parallelism) is 69.1 percent, as shown in Fig. 19e.
When the chip-level parallelism is exploited with the basic
read operation, and there are two chips in a channel, the
utilization of this I/O bus is 100 percent, as shown in
Fig. 19g; when the chip-level parallelism is exploited with
the basic write operation, and there are five chips in a Flash
channel, the utilization of this I/O bus is 100 percent, as
shown in Fig. 19h.

Generally speaking, to design a high-performance SSD, a
clear performance goal should be determined a priori. For
example, to support a special application with a required
read-operation bandwidth of 250 MB, and write-operation
bandwidth must reach 240 MB. How to choose an appropriate
hardware organization and SSD controllers to achieve the
performance goal is a design issue that must be addressed.

Let us assume that the target read/write bandwidth is
TRB/TWB, the utilization of the I/O bus of a channel as U,
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TABLE 7
Characteristics of Synthetic Workloads

Fig. 18. Normalized average response time of SSD-S1, SSD-S2,
SSD-S3, SSD-S4, SSD-S5, and SSD-S6.

Fig. 17. Normalized average response time of SSD1, SSD2, SSD3,
SSD4, SSD5, and SSD6.



and other variables are listed in Table 8. Figs. 19a, 19b, 19c,

19d, and 19e indicate the utilizations with only one chip in a

channel when exploiting different levels of parallelism.

Fig. 19f indicates the utilization when using two chips in a

channel and exploiting the die-level and the chip-level

parallelism. To fill up the I/O bus of a channel, we should

add chips in the bus where commands are used. We obtain

the minimal number of chips to fill up the I/O bus of the

channel by

min cp ¼ 1

U

� �
: ð1Þ

We obtain the read/write bandwidth of the I/O bus of a
Flash channel by

RB ¼ 1

tRC
; WB

1

tWC
: ð2Þ

To achieve the target read/write bandwidth (TRB, TWB)
by exploiting the channel-level parallelism, the number of
independent channels has a lower limit, which can be
calculated by

channel ¼ MAX
TRB

RB
;
TWB

WB

� �
: ð3Þ

For each independent Flash channel controller, the
number of logic cells, denoted by lc_ch, is fixed. To fill up
the I/O bus of a Flash channel, we should employ min_cp
chips in each independent channel. Based on the statistical
information of Table 1, (4) provides the number of I/O pins
consumed by one independent channel

pin ch ¼ 13þ 2�min cp: ð4Þ

Based on (1), (2), (3), and (4), we obtain the minimum
numbers of the I/O pins and logic cells used by Flash
channel controllers, as shown in (5) and (6), respectively,

lc f ch ¼ lc ch� channel; ð5Þ

pin f ch ¼ pin ch� channel: ð6Þ

As discussed above, an SSD controller must provide
lc_f_ch logic cells and pin_f_ch I/O pins for its channel
controllers to achieve the target bandwidth.
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TABLE 8
The Variables Used to Design an Appropriate SSD Controller

Fig. 19. The utilizations of exploiting different levels of parallelism.



5.2 Design Example

We have designed a high-performance SSD, which employs
a high-performance and cost-effective FPGA chip as the
SSD controller. The resource provided by this includes
approximately 600 user I/O pins and 128,000 logic cells. In
addition to the basic commands, advanced commands, such
as copyback and interleave, have been implemented in this
SSD. The multiplane is abandoned in the implementation,
based on Insight 2 (Section 4.1.2) indicating that only when
we use the multiplane command blindly, we can gain an
obvious enhancement of performance but at the cost of
significantly reduced endurance (namely, SSD lifespan).
Therefore, we give up this advanced command in our
design. We will use the copy-back command wisely, and
the interleave command ubiquitously.

Since implementing all other system components con-
sumes a large number of logic cells, the remaining logic
cells can only be used to implement four channel con-
trollers. Although the logic cells are exhausted, dozens of
user I/O pins are retained. In this case, the resource of logic
cells is scarcer than the user I/O pin resource.

We can use the formulas derived in Section 5.1 to
determine some key design parameters for this implementa-
tion. In our logic design of the Flash controller, tRC and tWC

are 30 ns. From the formula of Fig. 19f, we know that the
utilization of I/O bus of Flash channel is about 94 percent,
assuming that the page size is 2 KB. According to (1), we
must use at least two chips in a channel to fill up the channel.
According to (4), we know that a channel will consume 17
user I/O pins; therefore 4 independent channels will
consume 68 user I/O pins. Subtracting the user I/O pins
consumed by other components, including host interface,
buffer interface, and so on, there are about 80 I/O pins left.

Since 4 KB-page SSD achieves the best read/write
performance in most application environments [47], we
choose the page size of 4 KB in our design. There are two
available methods to implement a 4 KB-page SSD. The first
method is to use 4 KB-page Flash directly, with a channel
width of 8 bits, as shown in Fig. 2. The other is to compact
two 2 KB-page Flashes as one 4 KB-page Flash by bit
extension. In the second method, the channel width is
16 bits, as shown in Fig. 20. Compared with the 8-bit-width
channel, the 16-bit-wide channel doubles the bandwidth of
read/write operations, and utilizes the remaining user
I/O pins without increasing the consumption of logic cells.

6 RELATED WORK

This paper focuses on exploring and exploiting the four-
level parallelism inside SSDs. In this section, we briefly
review the work most relevant to our study, concentrating
on schemes exploiting parallelism inside SSDs.

Kang et al. [25] and Park et al. [27] exploit the channel-
level parallelism. Seol et al. [17] make use of the chip-level
parallelism, while Park et al. [26] employ the plane-level
parallelism. Previous studies in the literature mainly focus
on the channel-level and chip-level parallelism. In this
paper, we evaluate the performance and endurance impact
of exploiting all four levels of parallelism inside SSDs, the
interplay of advanced commands, allocation schemes of
SSD, and the priority order of four levels of parallelism.

Agrawal et al. [24] address the performance tradeoff
issues from the hardware and software points of view. The
authors have mainly studied the impact on performance of
the chip-level and die-level parallelism. Dirik and Jacob [8]
report that exploiting the channel-level and chip-level
parallelism significantly improves SSD performance, and
provides a detailed description about the internal com-
mands and structures of SSDs.

Hu et al. [47] and Chen et al. [48] represent the state of
the art in the literature about the parallelism inside SSDs.
Hu et al. [47] discuss four key factors that have direct
impact on SSD performance and endurance. One of the
four key factors is the optimal priority order of parallelism.
The authors have partially studied the parallelism’s impact
on performance and endurance. In contrast, this paper
focuses exclusively on the issues of parallelism inside
SSDs, with a more comprehensive and systematic ap-
proach to addressing this issue. Chen et al. [48] consider
the four levels of parallelism inside SSDs. The authors
present the research on the essential roles played by
exploiting the internal parallelism of SSDs. They regard an
SSD as a black box, implementing a set of experimental
approaches to inferring indirectly the performance and
endurance impact of parallelism inside SSDs. The conclu-
sions reported by the authors can guide the application
and system designers to better exploit the parallelism
inside SSDs. This is a top-down methodology. On the
contrary, we treat SSDs as a white box, observing the
internal behaviors directly. The insights obtained from this
paper can guide the design of high-performance SSDs. It is
a bottom-up methodology. These two methods are ortho-
gonal and mutually complementary.

7 CONCLUSION

There are four levels of parallelism inside SSDs, namely,
channel-level parallelism, chip-level parallelism, die-level
parallelism, and plane-level parallelism. In this paper, we
first discussed the impact on performance and endurance of
using advanced commands that have a direct relationship
to the die-level and plane-level parallelism. Subsequently,
we evaluated the impact on performance and endurance of
employing different allocation schemes that have a strong
connection to the exploitation of the four levels of
parallelism. Finally, we studied the optimal priority order
of exploiting parallelism inside SSDs. In these three parts,
we conducted several sets of experiments and obtained the
following key insights: 1) there are two recommended
approaches to using the advanced commands, namely, use
the copyback command, the MPW command, and the
interleave command wisely as well as use the copyback
command wisely, the MPW command blindly, and the
interleave command ubiquitously; 2) Static allocation is
found to perform the best on read performance under all
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Fig. 20. The bit extension channel.



workloads. Dynamic allocation performs the best on write
and overall performance and endurance under most work-
loads; 3) the optimal priority order of exploiting parallelism
in SSD is: the channel-level parallelism ! the die-level
parallelism! the plane-level parallelism! the chip-level
parallelism. Based on these insights, we discussed the
design guidelines of high-performance SSDs and presented
a design example.
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